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Maxwell’s equation for electric field was used to derive Einstein energy-momentum relation. This was 
done by using Plank photon energy relation beside wave solution in insulating no charged matter. 
Klein-Gordon quantum equation was also derived from the same Maxwell’s equation by utilizing 
resemblance between electric field vector and wave function in the intensity expression. However, the 
relation between polarization and electron rest mass was also used. 
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INTRODUCTION 
 
It is known that Maxwell’s equations with time derivative 
are invariant under relativistic Lorentz transforms. It is 
worth noting that relativistic Lorentz transforms are 
inapplicable to the time-harmonic waveguide waves in 
the frequency domain studied more than a century. The 
Klein-Gordon equation (Klein–Fock–Gordon equation or 
sometimes Klein–Gordon–Fock equation) is a relativistic 
version of the Schrödinger equation. It is the equation of 
motion of a quantum scalar or pseudoscalar field, a field 
whose quanta are spinless particles. It cannot be 
straightforwardly interpreted as a Schrödinger equation 
for a quantum state, because it is second order in time 
and because it does not admit a positive definite 
conserved probability density. Still, with the appropriate 
interpretation, it does describe the quantum amplitude for 
finding a point particle in various places, the relativistic 
wavefunction, but the particle propagates both forwards 
and backwards in time.  

Any solution to the Dirac equation is automatically a 
solution to the Klein–Gordon equation, but the converse 
is not true. The equation was named after the physicists, 
Oskar Klein and Walter Gordon, who in 1926 proposed 
that it describes relativistic electrons. Other authors 
making similar claims in that same year were Vladimir 
Fock, Johann Kudar, Théophile de Donder and Frans-H. 
van den Dungen, and Louis de Broglie (Sudoku, 2001; 

Kraus and Fleisch, 1999). Although it turned out that the 
Dirac equation describes the spinning electron, the Klein–
Gordon equation correctly describes the spinless pion. 

The problem of finding exact solutions of the Klein-
Gordon equation for a number of special potentials has 
been a line of great interest in recent years. Some 
authors, by using different methods, studied the bound 
states of the Klein-Gordon equation under the condition 
that each of the scalar potentials is equal to its vector 
potential (Sudoku, 2001; Kraus and Fleisch, 1999; 
Fleisch, 2008; Halliday and Resnick, 1978; Clark, 1865; 
Lal, 1965). 

At that time many scientists - one of them has been 
Maxwell himself - were convinced, that the correct notion 
for electrodynamics must be possible with quaternions. 
Conceptually, Maxwell’s equations describe how electric 
charges and electric currents act as sources for the 
electric and magnetic fields. Further, it describes how a 
time varying electric field generates a time varying 
magnetic field and vice versa. Maxwell’s equations have 
two major variants. The set of Maxwell’s equations used  
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total charge and total current including the difficult ones 
to calculate atomic level charges and currents in 
materials. Out of the four equations of Maxwell, the first 
two equations are scalar equations, while the last two are 
vector equations. Gauss’ law for electricity is more 
commonly simply referred to as Gauss’ law. Gauss’ law 
for magnetism is remarkably similar to Gauss’ law for 
electricity in form, but means something rather different 
(Vanderlinde, 2005; Nikon and Parker, 1978; Abbot, 
1977). 

The quantum mechanical equations rely heavily on 
Plank photon hypotheses. Despite the fact that the 
photon concept is related to quantum mechanics, 
Maxwell’s equations which are related to the 
electromagnetic waves are isolated from photon concept, 
special relativity (SR) and quantum mechanics. Different 
attempts were made to bridge the gap between M.Es, SR 
and quantum mechanics (Parragh, 1975;

 
Gatehouse, 

1981;
 

Mrato, 1991;
 

Bruce and Minning, 1993;
 

Rosen, 
1994;

 
Guo and Ma, 2001;

 
Morgan, 2005;

 
Kirchanov, 

2012). Unfortunately these attempts need not unify the 
three equations in one step. Thus, there is a need to 
relate them to each other. This is done in the study’s 
“Derivation of Einstein Equation from Maxwell’s 
Equations and Derivation of Klein-Gordon Equation” 
where Einstein energy-momentum relation is derived 
from Maxwell’s equations, and Klein–Gordon equation is 
also derived from the same Maxwell’s equation. 
Subsequently, this study’s focus is devoted for deriving 
Maxwell electric field equation. However, discussion and 
conclusion are shown as the study proceeds. 
 
MAXWELL’S ELECTRIC WAVE EQUATION 
 
The M.Es used to describe the behavior of 
electromagnetic waves are (Wolf, 1976; Griffths, 1999): 
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where D, B, E, H and J represent the electric flux density, 
the magnetic flux density, the electric field and the current 
density, respectively. Satisfying the following relations, 
we have (Salih and Teich, 2007): 
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where P, 0  and 0  
are the macroscopic polarization of 

the medium, the permittivity of free space and the 
permeability of free space, respectively. Applying the curl 
operator to both sides of the 3rd equation in (1), the 
following equation is obtained: 
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Using the identity (Salih and Teich, 2007; Taylor, 2005): 
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Equation (3) gives: 
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From (2) since: 
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Then (5) becomes: 
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From equation (7), since: 
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From (1) we have: 
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But: 
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Therefore: 
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Also:  
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Then:  
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The polarization, P , thus acts as a source term in the 
equation for radiation field (Hand and Finch, 1998). 
Since: 
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Therefore: 
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Therefore equation (13) becomes: 
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This represents the wave equation for electric field. 

Klein-Gordon equation for free particles is usually 
derived by using Einstein relativistic energy equation: 
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where pE,  and 
om  are the energy, momentum and rest 

mass, respectively.  
This equation is then multiplied by the wave function   

to get: 
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The energy and momentum terms are replaced by 
considering the particles as free waves having the wave 
function: 
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This equation is differentiated with respect to t  and x  to 

get: 
 




E
t

i 



    

 2

2

2
2 E

t





      ....………....… (20a)  

 




p
ixi




 
 222 p       …....… (20b) 

 
Inserting (20) in (18), the following equation is obtained: 
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This is Klein-Gordon equation. 
 
DERIVATION OF EINSTEIN EQUATION FROM 
MAXWELL’S EQUATIONS 
 

Maxwell’s equation for an electric of field intensity E  in a 
dielectric insulating non-charged medium material of 

electric dipole moment P  is given by equation (16) to be: 

Int. J. Phy. Sci.          017 
 
 
 

2

2

02

2

00

2

t

P

t

E
E









 

  

..….......………….. (22)

  

 

Where for non-charged insulating material: 
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Where for simplification it is better to consider current 
density J  as a constant, that is: 
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The electric dipole moment is given by:  
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Where n is the number density of charge, N is the total 
number, A is the area and x is the distance. 

V  = Volume = Ax
 Q  = Total charge = 0Nq

 
0q  = Charge of a single pole according to Gauss law. 

 

The charge Q  and total flux 
 

are related by: 
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To solve equation (22), one can assume the electric field 

intensity in free space E  to be: 
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From equations (26) and (24): 
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The speeds in vacuum c  and in the medium v  are 

given: 
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Thus (28) reads: 
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Inserting (27) and (30) in (22) yields: 
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Multiplying both sides by 
2c and 

2 , one gets: 
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Using De Broglie and Plank hypotheses: 
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Equation (32) can thus be given by: 
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Since the electromagnetic waves can be assumed as a 
photon moving with the speed of light c , the photon 

momentum rest mass 0m is given by: 
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Here the rest mass is assigned to a medium since the 
medium lower photon speed and it can even stop it when 
it is absorbed. Thus inserting (35) in (34) yields: 
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This is the Einstein expression that relates momentum to 
energy. 

The derivation of this relation can be done by using the 
classical equation of energy and Plank hypothesis only. 
The classical energy for an electromagnetic wave photon  

 
 
 
 
oscillating particle with maximum velocity is given by: 
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Since for waves or any harmonic system, the root mean 

square (r. m. s) velocity rmsv  is given by: 
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By assuming the photon speed c  equal to the r. m. s 

speed, that is: 
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It follows that: 
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According to Plank theory: 
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Therefore, the momentum p is given by: 
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DERIVATION OF KLEIN-GORDON EQUATION 
 
The Klein-Gordon equation can be obtained by replacing 
the electric dipole moment term in equation (17) by the 
term standing for photon rest mass in equation (30) to 
get: 
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Multiplying both sides by 
22c  and using equation (29), 

the following equation is obtained: 
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According to relation (35): 
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Thus (44) reads: 
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The incorporation of mass for photon in Maxwell’s 

equations corresponds to adding the term 
 AAm0  to 

the electromagnetic field lagrangian.  
Since in the electromagnetic (e. m) theory the 

oscillating electric wave E  is related to its e. m, the 
energy or intensity is obtained according to the relation: 
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And since the e. m intensity, when treated as a stream of 
photons of density n  is given by: 
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Where the photon density is related to the wave function 
 according to the relation: 
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Comparing (46) and (47) it follows that: 
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Thus the correspondence between E  and   secure the 

replacement of E  by   in equation (45) to get: 
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This represents Klein-Gordon equation for free electron. 

 
DISCUSSION 

 
In the study’s derivation of Einstein equation from 
Maxwell’s equations, Einstein energy momentum relation 
(35) is derived by using Maxwell’s equation (17) for 
electric field besides using Plank hypothesis of photon 
energy. The contradiction between the famous Einstein 
energy relations (40) and the classical energy expression 
(37) is removed by relating the effective wave velocity to 
the maximum wave velocity. 

In the study’s derivation of Klein-Gordon equation, 
Klein-Gordon quantum equation (50) is obtained from 
Maxwell’s equation (17) by replacing polarization dipole  
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term by rest mass term. This is not surprising as far as 
electric dipole atoms oscillating with the same frequency 

was shown in the e. m field where
 

tieEexP   .  

At this stage, resonance occurred and the photon was 

absorbed and stopped to be at rest, with mass 0m . The 

resemblance between E  and   as shown by equations 

(46, 47 and 49) secures replacement of E
 

by   to get 

Klein-Gordon quantum equation for the free electron. 
 
CONCLUSION 
 
The fact that Einstein momentum-energy relation and 
Klein-Gordon quantum equation is derived from 
Maxwell’s equations shows a possibility of unifying the 
electromagnetic theory with both special relativity and 
quantum mechanics. Thus, one can bridge the gap 
between special relativity and quantum mechanics. 
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