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This paper addresses a supplier-retailer logistic system for multi-item as a two-echelon environment. 
There is a single location in each echelon; the unique supplier at the first echelon has to replenish the 
retailer’s warehouse at the second echelon. We present the model which involves multi stage shipment 
with a specific number of vehicles and an algorithm is presented for solving the model. Computational 
results were used to verify the proposed model as well as the efficiency of the algorithm. 
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INTRODUCTION 
 
Today’s competitive environment speeds up the process 
of the designing, manufacturing and distributing of 
products. Simultaneously, severe needs for higher 
efficiency and lower operational cost are increasing. Such 
factors are compelling enterprises to continuously look for 
ways to improve their operations. Companies utilize tools 
such as optimization models and algorithms, decision 
support systems and computerized analysis to improve 
their operational performance and stay competitive. 
Lately, new approach which is based on integration of 
decisions of different functions (such as supply process, 
distribution, inventory management, production planning, 
facilities location, etc.) into a single optimization model for 
analyzing of production and distribution operations has 
been presented. This approach seems to be of 
meaningful relevance to companies which have adopted 
it. Blumenfeld et al. (1987), King and Love (1980) and 
Martin et al. (1993) present three cases which take 
advantages from applying this integrated analysis to their 
operations and developed decision support tools. 

Along with this flow, this paper investigated the 
integration of production, inventory and transportation 
arising in a supplier–retailer logistic system. When 
products are delivered from the supplier to the consumer, 
transportation costs are incurred. These costs have been 
calculated with the production cost or with the ordering 
cost in the traditional economic order quantity (EOQ) 

model. But in a practical logistic system, the 
transportation cost of a vehicle includes both of the fixed 
cost and the variable cost. The fixed cost refers to 
essential expenses, as parking fare and wages to driver 
should have constant sum in each period. Besides the 
fact that the variable cost is the cost directly associated 
with the distance traveled, it depends on consumption of 
oil. With respect to real condition, supposing the 
transportation cost is proportionate to the quantity 
delivered or considered as a constant sum is not 

reasonable. That is, the optimal ordering quantity 
*y  

obtained based on the general EOQ formula may be 
partly loaded by the vehicles and the logistic systems 
cost may not be the lowest. 

In reviewing the literature of Production-Inventory-
Distribution-Inventory models, Zhao et al. (2004) 
proposed a model which has two-echelon systems and 
considered optimizing both the inventory cost in the 
second echelon and the transportation cost in the first 
echelon. Their model involved the fixed cost of the 
vehicles, likewise the variable cost for single item. Mak 
and Wong.   (1995)   utilize   genetic   algorithm   for   
solving   the  
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inventory-production-distribution problem. They involved 
three echelons in their model which consists of several 
suppliers, one manufacturing plant and several retailers. 
The goal of their investigation was to simultaneously 
optimize stock levels, production quantities and 
transportation quantities and also minimized total system 
costs which composed of inventory holding, shortage, 
manufacturing and transportation costs. Yano et al. 
(1989) proposed a methodology that simultaneously 
specify safety stock level at the location in the second 
echelon (customer), number of vehicles required for 
regular delivery and time between shipments in a way to 
minimize overall operational costs. 

In the context of Production-Inventory-Distribution-
Inventory models, Blumenfeld et al. (1985) engage in 
analyzing the existing trade-offs between transportation, 
inventory holding and production set-up costs in the 
network. They calculated shipment sizes that trade-off 
the costs of shipment in the cases of direct shipping 
between nodes in the echelons, shipping through a 
consolidation terminal and a combination of both. The 
issue of combined inventory and vehicle routing 
problems, which addresses the coordination of inventory 
and transportation management has been a popular topic 
with the researchers. Federgruen et al. (1995) present a 
comprehensive review in this domain. These problems 
are Called Inventory Routing Problems (IRP) and are 
widely used in VMI partnerships. These issues can also 
be categorized as an example of channel coordination 
problem (CCP) which has been performed by both 
marketing and supply chain researchers. Huang and Lin 
(2010) present an integrated model that schedules multi-
item replenishment with uncertain demand to determine 
delivery routes and truck loads. They utilized Ant colony 
algorithm for solving the model. Liu and Chen (2011) 
proposed a mathematical model for the inventory routing 
and pricing problem (IRPP). They compared the result of 
the proposed heuristic method with that of two other 
methods in solving the model. In keeping with this trend, 
Kutanoglu and Lohiya (2008) proposed an optimization 
model for an integrated inventory and transportation 
problem in a single-echelon, multi-facility service parts 
logistics system with time based service level constraints. 
They conclude that crucial advantages can be gained 
from transportation mode and inventory integration. 

Mendoza and Ventura (2008) developed a traditional 
economic order quantity model with two modes of 
transportation, truckload (TL) and less than truckload 
(LTL) carriers. They used an exact algorithm to calculate 
optimal policies for single-stage models over an infinite 
planning horizon. Bard and Nananukul (2010) addressed 
a previously developed mixed-integer programming (MIP) 
model which minimizes production, inventory, and 
delivery costs across the various stages of the system. 
Their model consists of a single production facility, a set 
of customers with time varying demand, a finite planning 
horizon, and a fleet of homogeneous vehicles. They used 
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branch-and-price framework to solve the underlying MIP. 

This paper investigates minimizing the production, 
inventory and transportation costs of supplier-retailer 
logistic system which has multi-item case by considering 
both of the fixed and the variable cost. We consider both 
of the fixed cost and the variable cost in our model. 
Meanwhile, as regards the multiple use of the vehicle that 
can share the fixed cost and may reduce the total cost 
arising in the logistic system, the permitted working 
duration of the vehicle as well as the travel time of such 
vehicle along the trip is also taken into account. 

Subsequently, a breakdown of these steps is shown in 
this study: 
 
Step 1: Presenting a proposal model and some lemmas. 
Step 2: Using an appropriate algorithm to find the optimal 
solution for the model. 
Step 3: Submitting few examples. 
Step 4: Conclusion. 
 
THE MODEL 
 
The assumptions of our model for supplier-retailer 
problem are as follow: 
 
1. Demand is stagnant during the horizon of planning. 
2. Shortage not allowed (the replenishment should be 
completed before product shortage happening). 
3. We have a set of analogous vehicles which have 
bounded capacity for delivery. 
4. The third logistic party supplies our vehicles as the 
delivery required is being finished. 
 
The purpose of this paper is minimizing the whole 
average costs of the logistic system during the long 
horizon of planning. Parameters of the model are as 
follow: 
 

i  - represent the demand quantity per unit time (a day) 

for item i. 

iy
 

- indicates ordering quantity of item i (When 





w

i

iyy
1

 is received, the highest inventory occurs and 

it decreased to zero after T time periods). 
p - shows the capacity of the vehicle 
f - displays the lowest cost of hiring a vehicle in a working 
day (fixed cost of a vehicle is independent from the 
duration it will be traveled). 
c - depicts the variable transportation cost per trip. 
U - shows work duration per day. 
t - denotes duration of each trip. 

k - is the major setup cost for the family and ik  is the 

minor setup cost for item i. 

We use im  to show the integer number of T intervals that 
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the replenishment quantity of item i will lost. 

Carrying charge is depicted by r and is  is the production 

cost of item i. Now we modeled the problem as follow 

( 1P ): 
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(4) 
m,n,d are integers                                                                                                   
(5) 
 

In the above criterion, )(0 TTCU
 
is the total cost per unit 

time related to the logistic system, size of ordering for 

item i is shown by iy , number of delivering vehicle for y 

is m and the total trips of this vehicle is n. 
The number of trips finished by the vehicles for 

delivering quantity y is determined by constraint (2). 
Since d in constraints (3) and (4) represents the 
maximum trips each vehicle is able to complete in a 
working day, we can regard it as a predetermined 
parameter in the following paragraphs and sections. Let 

m = g(n), in the following we further express Model 1P  as 

Model 2P : 

 

2P
 
Model: 

Minimize TCU(T) = 
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Subject to Equations (2) and (5) and the following 
constraint (7): 
 

g(n) = m, 








d

n
                                                            (7)                                                                                                                     

 

TCU(T) is not a continuous function, it cannot be 
differentiated during the whole interval.  However, it is 
observed that when n is fixed, the value of g(n) is also a 

constant.  Denote  TCU(T)  with  a given n as )(TTCUn , 

 
 
 
 
that is: 
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It is obvious that when y>0, function )(TTCUn is 

continuous. To derive formulation (8), let: 
 

0
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and 
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Since variables n and g(n) are taken as the constant in 

function )(TTCUn , Model 2P
 
can be expressed as the 

following formulation: 
 





 )2(

)(min
min

st

TTCU n

Nn
 

 
Based on the above analysis, the following conclusions 
can be derived: 
 

Conclusion 1. The function )(TTCUn  
is convex and 

there exists a unique lowest solution at the point 
*

nn TT  , where 
*

nT  can be given by formulation (9). 

Conclusion 2. The optimal solution of Model 2P
 
can be 

obtained by the following steps: 
 
1. For different positive integer n, the lowest solution 

)(TTCUn which satisfies constraint (2) is searched for, 

and this value is denoted as f (n). 

2. The  optimal  solution  of Model 2P can be obtained by 



 
 
 
 

comparing all of f(n), Nn  
 

We wish to select the smi

,
 to minimize )(

*

nn TTCU . 

From an inspection of Equation 10, this is achieved by 

selecting the smi

,
 to minimize: 
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The minimization of Equation 11 is no simple matter 

because of two facts: (1) the smi

,
 interact (that is, the 

effects of one im  value depend on the values of the 

other smi

,
) and (2) the smi

,
 must be integers 

(Schweitzer and Silver, 1983). 
If we choose to ignore the integer constraints on the 

smi

,
 and set partial derivatives of )(

,
smF i  equal to zero 

(necessary conditions for a minimum), then: 
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For kj  , we have: 
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Dividing gives: 
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We can see that if: 
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Then the continuous solution of jm  is less than the 

continuous solution of km . Therefore, the item i having 
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Suppose that there is a solution to these equations, it 
results in: 
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Then, from Equation 13, we have: 
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Similarly, 
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Substituting Equations 16 and 17 back into the left-hand 
side of Equation 14 and squaring it, we obtain: 
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Cross-multiplication gives: 
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Substitution of this expression back into Equation 15 
gives: 
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A suggested iterative solution procedure is to initially set 

1...21  wmmm ; then solve for a corresponding 
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nn TTCU  value in Equation 10, and then use the 

found n value in Equation 18 to find a new sm j

,
, and so 

forth. 
Because of the convex nature of the functions involved, 

convergence to the true simultaneous solution pair 

( sm j

,
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nn TTCU ) is ensured. It is time consuming 

and impractical to compare f(n) for each Nn , 

however, based on the following theorems, we can limit 
the number of n that is needed to be considered and the 

optimal solution of Model 2P  can be found within limited 

steps. 
 

Theorem 1. For any function )(TTCUn , if 
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Proof. According to conclusion 1, we know that 

)(TTCUn  is convex and there exists a unique optimal 

solution at 
*

nn TT  . If 
*

nT  is within the interval given by 

constraint (2), clearly f(n)= )(
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hand, if 
*

nT  is not within the interval given by constraint 

(2), since the function )(TTCUn is either increased or 

decreased within the given interval, we can find the 

lowest value of )(TTCUn  
by comparing the value of the 

two side nodes of the interval. 
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Proof. It can be deduced from the above theorems. 
 
THE ALGORITHM 
 
Now the appropriate algorithm is presented as follows: 
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Step 6: Use found n in Equation 18 and obtain .jm  If 

there is no changes in jm  values then stop, else go to 

Step 2. 
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Step 8: Calculate )(
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kk nn TTCU for 1 nnk . 

 

Step 9: If )(
*

min kk nn TTCUTCU  then go to Step 10 

else n=n+1 and go to Step 3. 
 

Step 10: Use found n in Equation 18 and obtain .jm  If 

there is no changes in jm  values then stop, else go to 

Step 2. 
 
THE EXAMPLES 
 
For verifying the efficiency of the given model as well as 
the algorithm, we provide three examples. First example  
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is based on this assumption that the transportation cost is 
proportional to the quantities delivered and no traveling 
duration constraint is considered. In the second example, 
we use travel distance of the vehicles as a base for 
calculating the transportation cost and the fixed cost is 
not considered. In the third example, we consider the 
transportation costs composed of the fixed cost, only the 
fixed cost which is a fixed sum whenever a vehicle is 
employed, but also the variable cost which is calculated 
based on the travel distance of the vehicle. Furthermore 
we consider the permitted working duration as well as the 
travel time of any vehicle along the trip in the last two 
examples. 

The parameters in these examples are the same as the 
prior section. In order to simplify our process, the units of 
the parameters in the examples are not considered, with 
respect to the fact that the computational results as well 
as the conclusions cannot be affected by such 
simplification. 

In the first example, we track procedure (11) to find the 

best set of smi

,
 and syi

*,
 because the transportation 

cost is assumed to be proportional to the quantities 
delivered and no traveling duration constraint is 
considered. 
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rounded to the nearest integer greater than zero. 
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Step 4. Determine 
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Example 1 
 

It is assumed that  
 

,077.0,20,10,15,55,45,25,30 321321  rkkkk

30.0,20.0,25.0 321  sss . Furthermore, the 

transportation cost is assumed to be proportional to the 
quantity delivered and the unit transportation cost, 
defining by a, is equal to 0.2. The aim is to determine the 

optimal  value  of  
*T   and  

*

iy
 
(i=1,2,3)  by considering 
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minimizing the total average cost of the logistic system, 

where 
*T  is the ordering cycle, 

*

iy  is the economic 

order quantity for item i. Now we specify 
*T , 

*

iy based 

on the above procedure: 
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Thus in each ordering cycle, items 1, 2 and 3 are 
ordered: 
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Considering the results in the optimal solution, an order 
for 1000 unit products consisting of 300 unit item 1, 250 
unit item 2, and 450 unit item 3, should be sent. The 
optimal ordering cycle is 10 days and the total 
transportation cost in each ordering cycle is 200. 
According to the results, we present the next example. 
 

Example 2 
 

It is assumed that 

,077.0,20,10,15,55,45,25,30 321321  rkkkk
 

4,8,0,40,200,30.0,20.0,25.0 321  tufcpsss

. We want to optimize the value of 
*T  and 

*

iy (i =1, 2, 3). 

The algorithm described in Section 3 is coded by 
MATLAB. Table 1 depicts the computational results. 

According to the results and based on the stopping 
criterion in Step 10, the algorithm stops when n=8. The 

optimal solution occurs at n=5, and 10* T ,  

450,250,300
*

3

*

2

*

1  yyy , 1000* y , 

 
 
 
 

minTCU = 66.00. Three vehicles are used for delivery. 

The results of the above examples are equal because 
the second example is designed based on the results of 
the first example; the given parameters in Example 2 

ensure that the vehicle used for delivery of 
*y  in 

Example 1 is fully loaded. However, in Example 2, when 

n = 5, the value of 
*

nT calculated according to formulation 

(9) is 17.32, whereas based on the algorithm, 
*T equals 

to 10. Therefore, the method which used the traditional 
economic ordering quantity formula is not proper for the 
given example. 

Results show that for all 8n , )()(
*

nn TTCUnf  , 

and the value of )(
*

nn TTCU  increase along with growth 

of n. The following computation indicates that when n = 

12, min

*
16.74)()( TCUTTCUnf nn  . The 

outcomes confirm the algorithm. 
 
Example 3 
 
We have  
 

,25.0,077.0,20,10,15,55,45,25,30 1321321  srkkkk

 

4,8,30,40,200,30.0,20.0 32  tufcpss

. The computational results are presented in Table 2. 
The results show that based on the criterion in Step 10, 

the algorithm stops when n=9. The optimal solution 

occurs at n=6, and 12* T , 

540,300,360
*

3

*

2

*

1  yyy , 1200* y , 

minTCU = 73.83. Three vehicles are used for the 

delivery. The computation indicates that when n = 16, 

min

*
06.92)()( TCUTTCUnf nn  . 

By considering the fixed cost of the vehicle, the value of 
*T and 

*y  is different from that of the obtained results in 

Example 2. It shows that when n = 5, one of the used 
vehicles will only finish one trip so the marginal cost of 
delivering the unit product by this vehicle will be higher 
than that of the other vehicle which can complete two 
trips. Furthermore, the inventory quantities may increase 
by utilizing the vehicle to the greatest efficiency. So the 
optimal solution of the problem is the results of the trade-
off of the transportation cost and the inventory cost. 
 
CONCLUSION 
 
This paper addressed inventory problem in multi-item 
supplier-retailer logistic system through integration of 
production, inventory and transportation. We considered 
both fixed and variable transportation cost. Also we 
considered  multiple  use  of  the vehicle which can share  
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Table 1. Computational results of Example 2. 
 

n 
1T  2T  

*

nT  )(
*

nn TTCU  )(
*

1TTCUn  )(
*

2TTCUn  f(n) 
minTCU  

1 0.01 2.00 11.83 49.66 14026.01 98.00 98.00 98.00 

2 2.01 4.00 13.42 52.83 117.56 75.00 75.00 75.00 

3 4.01 6.00 14.83 55.66 84.87 68.66 68.66 68.66 

4 6.01 8.00 16.13 58.24 75.27 66.50 66.50 66.50 

5 8.01 10.00 17.32 60.64 71.46 66.00 66.00 66.00 

6 10.01 12.00 18.44 62.87 69.97 66.33 66.33 66.00 

7 12.01 14.00 19.50 64.98 96.65 67.14 67.14 66.00 

8 14.01 16.00 20.50 66.98 - - - - 

 
 
 

Table 2. Computational results of Example 3. 
 

n 
1T  2T  

*

nT  )(
*

nn TTCU  )(
*

1TTCUn  )(
*

2TTCUn  f(n) 
minTCU  

1 0.01 2.00 13.04 52.07 17026.01 113.00 113.00 113.00 

2 2.01 4.00 14.49 54.98 132.49 82.50 82.50 82.50 

3 4.01 6.00 16.74 59.46 99.83 78.66 78.66 78.66 

4 6.01 8.00 17.89 61.77 85.25 74.00 74.00 74.00 

5 8.01 10.00 19.75 65.49 82.70 75.00 75.00 74.00 

6 10.01 12.00 20.74 67.47 78.96 73.83 73.83 73.83 

7 12.01 14.00 22.36 70.71 79.64 75.71 75.71 73.83 

8 14.01 16.00 23.24 72.47 78.55 75.75 75.75 73.83 

9 16.01 18.00 24.70 75.39 - - - - 

 
 
 
the fixed transportation cost. The proposal model which 
finds the best trading-off of all costs related to the logistic 
system is presented and the suitable algorithm for such 
model is shown. Thus, the computational results verify 
the proposed model as well as the efficiency of the 
algorithm. 

For future research, the following suggestions are 
made: 
 
1. More than one retailer or more than one supplier can 
be considered in the model. 
2. Through the further investigation of the relationship of 
each item in the model, more efficient algorithms can be 
proposed. 
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