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The aim of the present article is to study the inherent irreversible effects in magnetohydrodynamic 
(MHD) flow over a stretching sheet with partial slip and convective boundary. The non-linear partial 
differential equations governing the flow and heat transfer phenomenon are reduced to a set of non-
linear ordinary differential equations with the help of suitable similarity transformations. The 
transformed equations are then solved analytically with the help of the homotopy analysis method. The 
expressions for the velocity and the temperature fields are obtained and are utilized to compute the 

entropy generation number Ns  and the Bejan number Be . Both numerical and graphical results are 
presented and discussed for various physical parameters involved in the problem. 
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INTRODUCTION 
 
The study of boundary layer flow due to stretching 
surface has gained tremendous attention of researchers 
during the last few decades due to its wide applications in 
industrial and manufacturing processes. Some of them 
are extrusion of a polymer sheet from a dye, cooling of 
metallic plates, hot rolling, paper production, wire 
drawing, aerodynamic extrusion of plastic sheets, etc. In 
the manufacturing of metallic and polymeric sheets, 
polymers are drawn through a slit die in molten form at 
significantly higher temperatures. The extrudate is 
stretched into a sheet which is then solidified through 
gradual cooling by direct contact with some cooling 
material such as water. In these cases, the properties of 
the final product highly depend on the rate of cooling. 
Crane (1970) initiated the study of boundary layer flow of 
a viscous fluid due to linearly stretching surface. Gupta 
and Gupta (1977) analyzed the heat and mass transfer 
over an isothermal stretching sheet with suction and 
blowing. Grubka and Bobba (1985) investigated the heat 
transfer along a linearly stretching sheet by assuming a 
power law temperature distribution and obtained solution 
in terms of Kummer’s function. Banks (1983) studied the 

flow over a stretching surface with power-law velocity 
variation. Ali (1995) and Elasbheshy (1998) extended the 
work of Banks for the porous stretched surface. Sriramalu 
et al. (2001) examined the steady flow and heat transfer 
of a viscous fluid over a stretching sheet through a 
porous medium. Andersson (2002) presented the effects 
of slip on viscous flow over a stretching sheet. Wang 
(2002) gave the exact solution of the flow due to 
stretching surface with partial slip. Fang et al. (2009) 
studied the magnetohydrodynamic viscous flow over a 
permeable stretching sheet under the effects of slip. Yao 
et al. (2011) examined the heat transfer phenomenon 
over a generalized stretching and shrinking sheet with 
convective boundary surface. 

In all the above mentioned papers, a lot of discussion 
has been made about fluid flow and heat transfer in 
viscous fluid, yet they have been restricted to only first 
law  analysis  from  thermodynamical  point  of view. First  
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law of thermodynamics is used to analyze the energy of 
the system quantitatively. However, from a qualitative 
point of view, the second law of thermodynamics is an 
important tool to scrutinize the irreversibility effects due to 
flow and heat transfer. Thermodynamic irreversibility is 
closely related to entropy production. Different sources 
such as heat transfer and viscous dissipation are 
responsible for the generation of entropy (Bejan, 1996). 
The pioneer work on entropy generation in flow systems 
was done by Bejan (1979). He showed that the 
engineering design of a thermal system could be 
improved through minimizing the entropy generation. 

Since then, many researchers examined the entropy 
effects in flow and heat transfer problems (San et al., 
1987; Sahin, 1998; Yilbas et al., 1999; Hijleh et al., 1998; 
Mahmud and Fraser, 2003; Odat et al., 2004; Arpaci and 
Salamet, 1990; Reveillere and Baytas, 2010; Makinde, 
2006a, b, 2011, 2012). However, irreversibility effects in 
flow due to stretchable surfaces were rarely discussed. 
Tamayol et al. (2010) studied the effects of entropy 
generation due to heat transfer in a porous medium over 
a stretching surface with suction and injection. Yazdi et 
al. (2011) investigated the partial slip effects on entropy 
generation in magnetohydrodynamic flow over a 
nonlinear permeable stretching surface. Butt et al. (2012) 
examined the effects of viscoelasticity on entropy 
generation in a porous medium over a stretching sheet. 
The effects of magnetic field on entropy generation over 
a radially stretching sheet were investigated by Butt et al. 
(2012) and used analytical and numerical techniques to 
analyse the problem. Munawar et al. (2013) made 
thermal analysis of flow over a oscillatory stretching 
cylinder. 

The aim of this study is to investigate the irreversibility 
effects in a magnetohydrodynamic flow over a stretching 
surface with partial slip and convective boundary. The 
effects of viscous dissipation are present in the 
considered problem. 

 
MATHEMATICAL FORMULATION OF THE PROBLEM 

 
A steady two-dimensional laminar flow of an 
incompressible viscous fluid over a stretching sheet is 

considered. The sheet lies in the plane 
0y 

 with the 

flow being confined to 
0y 

. The coordinate x  is being 

taken along the stretching sheet and 
y

 is normal to the 
surface. Two equal and opposite forces are applied along 
the x-axis, so that the sheet is stretched, keeping the 
origin fixed. A uniform transverse magnetic field of 

strength 0B
 is applied parallel to y-axis. It is also 

assumed that the fluid is electrically conducting and the 
magnetic Reynolds number is small so that the induced 
magnetic field is neglected. No electric field is assumed 
to exist. The temperature of the surface is due to 
convective heating process which is characterized by a 
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 temperature fT
 and a heat transfer coefficient h . Thus, 

the governing equations for the flow and heat transfer 
can be written as: 
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The boundary conditions for the velocity and the 
temperature fields are: 
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Where 
( )wu x ax

, u  and v  are the x  and 
y

 

components of the velocities respectively,   is the 

kinematic viscosity of the fluid,   is the electrical 

conductivity of the fluid, 0B
 is the applied magnetic field, 


 is the density of the fluid, L  is the slip parameter, pc

 

is the specific heat at constant pressure, k  is the thermal 

conductivity of the fluid, T  is the temperature of the fluid, 

fT
 is the wall temperature, 

T  is the temperature far 

away from the surface and a  is the dimensional 
constant. 

Introducing the similarity transformations, we have the 
following equation: 
 

'( ),      ( ),    ( ) ,    .
f

T T a
u axf v a f y

T T
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                                       (5) 

 
Using the transformations from equation (5) into 
equations (1-3), the continuity equation is automatically 
satisfied and we obtain the following system of non-
dimensional equations: 
 

2''' '' ' ' 0,f ff f Mf   
                        (6) 
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2'' Pr ' Pr  '' 0.f Ec f   
                        (7)

        
 
The corresponding boundary conditions become: 
 

'(0) 1 ''(0),      (0) 0,     ( ) 0.f Kf f f               (8)
           

'(0) [1 (0)],        ( ) 0.Bi                              (9)
        

where
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 is the magnetic field parameter, 

a
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 is  the non-dimensional slip parameter, 

Pr
pc

k
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 is the Prandtl number, 

2 2

( )p f

a x
Ec

c T T


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 is 

the Eckerd number and 

h
Bi

k a




 is the Biot number. 
 
Entropy generation 
 
Using boundary layer approximation, the local volumetric 

rate of entropy generation GS
 for a viscous fluid in the 

presence of magnetic field is defined by Bejan (1979) as: 
 

2 2 2
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                         (10) 

 
The first term in equation (10) is the irreversibility due to 
heat transfer, the second term is the entropy generation 
due to viscous dissipation and the third term is the local 
entropy generation due to the effect of the magnetic field. 
In terms of dimensionless variables, the entropy 
generation has the form: 
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is the Brinkman  

 
 
 
 
number. Thus dimensionless form of local entropy 
generation in equation (11) can be expressed as: 
 

,H f m H FNs N N N N N    
   

                         (12) 
 

where HN
 is the local entropy generation due to heat 

transfer, fN
 is the local entropy generation due to fluid 

friction and mN
 is the local entropy generation due to 

magnetic field. 
An alternative irreversibility distribution parameter 

called the Bejan number is defined as follows: 
 

      
.

  

HNEntropy generation due to heat transfer
Be

Total entropy generation Ns
 

                         (13) 
 
Clearly, the Bejan number ranges from 0 to 1. When the 

value of Be
 is greater than 0.5, the irreversibility due to 

heat transfer dominates whereas Be < 0.5 refers to 
irreversibility due to viscous dissipation and magnetic 
field. The contribution of entropy due to heat transfer is 
equal to that of fluid friction and magnetic field, when 

0.5Be  . 
 
Solution of the problem 
 
The solution of the nonlinear equations (6) and (7) 
together with the boundary conditions (8) and (9) are 
obtained using the homotopy analysis method. This 
method is proposed by Liao (2003) and in the recent few 
years, this method has been successfully employed to 
solve many types of nonlinear problems in Science and 
Engineering. In view of the boundary data (8) and (9), we 
choose the following set of initial guesses: 
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The linear operators are given as: 
 

3 2
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L L

d d d d


 

   
   

   
                         (15) 
 
All the remaining procedure of the method is renowned 
and therefore is concealed here for simplicity (Liao, 2003; 
Ali and Mehmood, 2008, 2010; Hussain et al., 2012). The 
final solutions obtained by HAM are in the forms of series 
given by: 
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Figure 1. curves  for 20th order approximation. 

 
 
 
Table 1. Convergence of HAM solutions for different order of 

approximations when M = 1.0, K = 0.5, Pr = 1.0, Ec = 0.5 and hf = 
he =-0.7 
 

Order of convergence 
  

5 0.776570 0.157372 

10 0.7765830 0.148219 

15 0.7765830 0.147919 

20 0.776583 0.147914 

25 0.776583 0.147914 

30 0.776583 0.147914 

35 0.776583 0.147914 

40 0.776583 0.147914 
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m m

f f f        
 

 

    

                         (16) 

 

The convergence of the series solutions 
( )f 

 and 
( ) 

 

strongly depend upon the auxiliary parameters f
 and 

 . In order to determine the admissible ranges of f
 

and   for which the series solutions converge, the so 

called -curves  are drawn in Figure 1 at the 20th order 
of approximation. It is observed that the suitable ranges 

of f
 and   are 

0.2 1.0 and 0.3 0.9f f        
. Moreover, 

Table 1 is constructed to present the convergence of 
series solutions which shows that the series solutions 
converge at the 25th-order of approximation up to 6 
decimal places. Furthermore, the averaged residual 
errors are calculated by using the formulas: 
 

2 2

, ,

0 0 0 0

1 1
( ) ,      ( ) .

1 1

N m N m

f m f i m i

j i j i

E N f j E N j
N N

   
   

      
         

       
   

                                                           (17) 
 

where 
20,  =0.05.N  

 Figures 2 and 3 present the 

averaged residual errors against f
 and 

.  
 
RESULTS AND DISCUSSION 
 
Here, the obtained results are compared with a previous 
study and the variations in the values of skin friction 
coefficient and Nusselt number are noted for various 
physical parameters. The velocity and the temperature 
profile  are  plotted  for  the  parameters  involving  in  the  
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Figure 2. Residual error ,m fE  for 20th order approximation. 

 
 

 

 
 

Figure 3. Residual error ,mE   for 20th order approximation. 

 
 
 
problem. Moreover, the effects of these parameters on 

the local entropy generation Ns  and the Bejan number 

Be  are also discussed. 

Table 2 gives the comparison of our results of 
'(0)f

 

and 
''(0)f

 with those reported by Andersson [8] in the 
absence of magnetic field parameter. A good agreement  



 
 
 
 

Table 2. Comparison of values of '(0)f  and ''(0)f  with 

Andersson [8]  when 0.0M  . 

 

 
 

 

 

 

 

 

 

 

0 1 1 1 1 

0.1 0.9128 0.9128 0.8721 0.8721 

0.2 0.8447 0.8447 0.7764 0.7764 

0.5 0.7044 0.7044 0.5912 0.5912 

1.0 0.5698 0.5698 0.4302 0.4302 

2.0 0.4320 0.4320 0.2840 0.2840 

5.0 0.2758 0.2759 0.1448 0.1448 

10.0 0.1876 0.1876 0.0812 0.0812 

20.0 0.1242 0.1242 0.0438 0.0438 

50.0 0.0702 0.0702 0.0186 0.0186 

100 0.0450 0.0449 0.0095 0.0095 

 
 
 

Table 3. Values of '(0)f  and ''(0)f  for 

different values of  and M K . 

 

K 
   

0.0 1.0 1.41421 1.0 

0.1  1.20564 0.879436 

0.5  0.776583 0.611709 

1.0  0.546602 0.453398 

3.0  0.256325 0.231024 

5.0  0.168641 0.156796 

10.0  0.091250 0.087502 

0.5 0 0.591195 0.704402 

 0.5 0.698251 0.650875 

 1.0 0.776583 0.611709 

 1.5 0.838072 0.580964 

 2.0 0.888480 0.555760 

 
 
 
is observed between the studies which show the 
accuracy and validity of the homotopy analysis method. 
Table 3 presents the effects of different values of the slip 

parameter K  and the magnetic field parameter M  on 

''(0)f
 and 

'(0)f
. It is observed that an increase in 

the slip parameter causes the values of 
''(0)f

 and 

'(0)f
 to decrease. However, opposite behavior is 

noticed in case of magnetic field parameter. Table 4 
depicts the variation of heat transfer at the surface 

'(0)
 for different values of 

,  ,  ,  Pr  and M K Bi Ec
. It 

is observed that the heat transfer rate at the surface 
decreases     with     an     increase     in    the   values   of  
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,   and M K Ec  and increases with Pr  and Bi . Figure 4 
shows the effects of magnetic field parameter on the 
velocity profile plotted against the non-dimensional 

parameter 


. It is noticed that an increase in the value of 

M  causes '( )f   to decrease. The variation of velocity 

profile for different values of the slip parameter K  is 
presented in Figure 5. It is noteworthy that an increase in 

the slip parameter causes '( )f   to decrease. Figure 6 

shows that the effects of M  on temperature profile ( )   

are increasing. The influence of the Prandtl number Pr  

on ( )   is presented in Figure 7. A decrease in the 
temperature profile is noticed with an increase in the 
values of the Prandtl number. The effects of Eckerd 

number Ec  on temperature profile are illustrated in 
Figure 8. An increase in thermal boundary layer is 

observed with increase in the value of Ec . Figure 9 
illustrates that an increase in the value of the Biot number 

Bi  causes the thermal boundary layer thickness to 
increase.  

Figures 10-13 depict the influence of different 
parameters involved in the problem on local entropy 

generation number Ns . Figure 10 shows the effects of 

the magnetic field parameter M  on the local entropy 
generation number. It is noteworthy that in the absence of 
the magnetic field, the entropy generation rate is low. 
However, the presence of the magnetic field causes more 
entropy generation in the fluid. Also it is noticed that for a 

fixed value of M , the entropy generation is maximum 

near the stretching surface and decreases with 


. Figure 
11 illustrates that with an increase in the slip parameter 

K , the friction between the stretching surface and the 
fluid decreases which ultimately results in less entropy 
production. The variation in the local entropy generation 

number Ns  for various values of Biot number Bi  is 

presented in Figure 12. There is an increase in Ns  with 
an increase in the value of the Biot number. However, for 

large values of Bi , these effects are not so prominent. 

The effects of the group parameter /Br   on Ns
 are 

significant as it determines the relative importance of 
viscous effects. It is observed in Figure 13 that the 

entropy production increases with /Br  . 
To get an idea of whether the fluid friction and magnetic 

field irreversibility dominates over the heat transfer or 

vice versa, the Bejan number Be  is introduced. Figure 
14 depicts that the irreversibility effects due to fluid 
friction and magnetic field become dominant near the 
stretching surface with an increase in the magnetic field 

parameter  M .  The situation in reverse in the boundary  



Butt et al.          052 
 
 
 

Table 4. Values of '(0)  for different values of 

 , ,  , Pr  and M K Bi Ec . 

 

K 
 Bi  Pr Ec 

 

0.0 1.0 0.5 1 0.2 0.187246 

0.5     0.185518 

1.0     0.171306 

3.0     0.126905 

5.0     0.100728 

0.5 0    0.229466 

 0.5    0.205441 

 1.0    0.185518 

 1.5    0.168671 

 2.0    0.154240 

0.5 1.0 0.1 1 0.2 0.069102 

  0.5   0.185518 

  1.0   0.235008 

  3.0   0.285843 

  5.0   0.298769 

0.5 1.0 0.5 0.7 0.2 0.157570 

   1.0  0.185518 

   2.0  0.238066 

   3.0  0.263651 

   5.0  0.289006 

0.5 1.0 0.5 1 0.1 0.198053 

    0.2 0.185518 

    0.5 0.147914 

    0.8 0.110310 

    1.0 0.085241 
 
 

 

 
 

Figure 4. Effects of magnetic field parameter M on velocity profile '( )f  . 
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Figure 5. Effects of slip parameter K  on velocity profile '( )f  .
 

 
 
 

 
 

Figure 6. Effects of magnetic field parameter M on temperature profile ( )  . 

 
 
 
layer region and the heat transfer irreversibility dominates 
fully in the mainstream regime. With the increase in slip 

parameter K , the irreversibility due to fluid friction and 
magnetic field slightly decreases at the surface. In the 

main stream region, the heat transfer irreversibility effects 
are dominant as shown in Figure 15. Figure 16 illustrates 
that for a particular value of Biot number, the influence of 
the   fluid   friction   and  magnetic  field  irreversibility   is  
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Figure 7. Effects of Prandtl number Pr  on temperature profile ( )  . 

 
 
 

 
 

Figure 8. Effects of Eckerd number Ec  on temperature profile ( )  . 

 
 
 
significant near the surface and in the free stream 
regime, the heat transfer irreversibility effects are 

prominent. However, with an increase in the value of Bi , 

the fluid friction and magnetic field irreversibility becomes 
slightly less near the surface. In case of the group 
parameter,  the  fluid friction irreversibility effects become  
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Figure 9. Effects of Biot number Bi  on temperature profile ( )  . 

 
 
 

 
 

Figure 10. Effects of magnetic field parameter M  on local entropy generation Ns . 
 
 
 

dominant near the surface with increase in /Br   as 
presented in Figure 17. In the main stream regime, the 
irreversibility due to heat transfer dominates. 

Conclusions 

 
In the present study, the magnetohydrodynamic flow over 
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Figure 11. Effects of slip parameter K  on local entropy generation Ns . 
 

 
 

 
 

Figure 12. Effects of Biot number Bi  on local entropy generation Ns . 
 

 
 

a stretching surface with partial slip and convective 
boundary is considered and the entropy generation 
effects are studied. The solution is obtained using the 
Homotopy analysis method and the graphs are presented 
for different physical parameters. The main observations 

of the following study are as follows: 
 

- The velocity profile 
'( )f 

 decreases with increase in 

magnetic   field   parameter  M  and  slip  parameter  K . 
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Figure 13. Effects of group parameter /Br   on local entropy generation Ns . 

 
 
 

 
 

Figure 14. Effects of magnetic field parameter M  on Bejan number Be . 
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Figure 15. Effects of slip parameter K  on Bejan number Be . 

 
 
 

 
 

Figure 16. Effects of Biot number Bi  on Bejan number Be . 
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Figure 17. Effects of group parameter /Br   on Bejan number Be . 

 
 
 

- The temperature profile ( )   increases with an 

increase in the values of magnetic field parameter M , 

Eckerd number Ec  and Biot number Bi  and decreases 

with increase in Prandtl number Pr . 
- The local entropy generation number increases with 

magnetic field parameter M, the Biot number Bi  and the 

group parameter /Br  , and decreases with the slip 

parameter K . 
- The fluid friction and magnetic field irreversibility 
dominates near the surface and the heat transfer 
irreversibility is dominant in the mainstream region. 
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