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In this paper, a framework was presented to obtain the solutions to the fractional vibration equation  by 
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INTRODUCTION 
 
In recent years, analysis of fractional differential 
equations, which are obtained from the classical differen-
tial equations in mathematical physics, engineering, 
vibration and oscillation by replacing the second order 
time derivative by a fractional derivative of order   

satisfying 1 <   ≤ 2, have been a field of growing 

interest as evident from literature survey (Momani, 
2005a, b; Momani and Ibrahim, 2007; Das, 2008; 
Momani et al., 2007; Odibat et al., 2008). Fractional 
derivatives provide an excellent instrument for the 
description of memory and hereditary properties of 
various materials and processes. 

Recently, a new modified Riemann-Liouville left 
derivative is proposed by Jumarie (1993, 2006). 
Comparing with the classical caputo derivative, the 
definition of the fractional derivative is not required to 
satisfy higher integer-order derivative than  . Secondly, 

the  th derivative of a constant is zero. For these merits, 

Jumarie modified derivative was successfully applied in 
the probability calculus (Jumarie, 2009a) and fractional 
Laplace problem (Jumarie, 2009b). 

In this paper, the homotopy analysis method (Liao, 
2003a, b) was applied to solve the fractional vibration 
equation. With the present method, numerical results can 
be obtained by using a few iterations. The HAM contains 

the auxiliary parameter .  which provides us with a 

simple way to adjust and control the convergence region 
of solution series for large value of t (Liao, 2009). Unlike 
other numerical methods, it gives low degree of  accuracy 

for large values of t. Therefore, the HAM handles linear 
and inhomogeneous problems without any assumption 
and restriction (Hashim et al., 2009; Das and Gupta, 
2011). 

In this paper, the fractional vibration equation was 
considered by using homotopy analysis method. This 
fractional vibration equation is obtained by replacing the 
second time derivative term in the corresponding 
vibration equation by a fractional derivative of order   

with 1 <   ≤ 2. The derivatives are understood in the 

modified Riemann-Liouville sense. The general response 
expression contains a parameter describing the order of 
the fractional derivative that can be varied to obtain 
various responses. In the case of    = 2, the fractional 

vibration equation  reduces to the standard vibration 
equation. 
 

Modified Riemann-Liouville derivative 
 

It is assumed that )(,: xfxRRf   denotes a 

continuous (but not necessarily differentiable) function 

and the partition of 0h  is in the interval (0, 1). Through 

the fractional Riemann Liouville integral, the following 
equations are shown: 
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The modified Riemann-Liouville derivative is defined as: 
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where nnx  1],1,0[  and 1n . 

 
Jumarie’s derivative is defined through the fractional 
difference: 
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where )()( hxfxFWf  . Then the fractional 

derivative (Jumarie, 2009a) is defined as the following 
limit: 
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The proposed modified Riemann-Liouville derivative as 
shown in equation (2) is strictly equivalent to equation (4). 
Meanwhile, this study would introduce some properties of 
the fractional modified Riemann-Liouville derivative in 
equations (5) and (6): 

 
(a) Fractional Leibniz product law: 
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                                            (5) 

 
(b) Fractional Leibniz formulation: 
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Therefore, the integration by part can be used during the 
fractional calculus: 
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(c) Integration with respect to 
 )(d . 

Assuming )(xf  denotes a continuous RR   function, 

the following quality is used for the  integral  with  respect  
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to 
 )(d : 
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THE HOMOTOPY ANALYSIS METHOD (HAM) 
 
This study considers the following differential equation: 
 

   ,0, txuFD                                                          (9) 

 
where FD is a nonlinear operator for this problem, x and t 

denote an independent variables, and  txu ,  is an 

unknown function. 
In the frame of HAM, the following 0th-order 

deformation can be constructed: 
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                                                                                 (10) 
 

where  1,0q  is the embedding parameter, 0  is 

an auxiliary parameter,   0, txH  is an auxiliary 

function, L is an auxiliary linear operator,  txu ,0  is an 

initial guess of  txu , , and  qtxU ;,  is an unknown 

function of the independent variables  x, t  and  q. 

Obviously, when 0q   and  ,1q  it holds that: 

 

   ,,0;, 0 txutxU   and    ,,1;, txutxU   respectively                                           

                                                                                 (11) 
 

Using the parameter q,  qtxU ;,  is expanded in Taylor 

series as follows: 
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Assuming that the auxiliary linear operator, the initial 

guess, the auxiliary parameter   and the auxiliary 

function  txH ,  are selected such that the series 

(Equation 12) is convergent at 1q , then due to 

Equation 12, the following equation is derived: 
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Let us define the vector: 
 

        txutxutxutxu nn ,,...,,,,, 10


                                                                              

 
Differentiating (10) m times with respect to the 

embedding parameter q, then setting 0q  and finally 

dividing them by !m , we have the so-called mth-order 

deformation equation: 
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Finally, for the purpose of computation, the HAM solution 
(13) will be approximated by the following truncated 
series: 
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Fractional vibration equation 
 

In this study, the fractional calculus version of the 
standard vibration equation was considered in one 
dimension as: 
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which constitute the relation between the radial velocity of 

 tru ,  to the fractional time derivative of order   (1 < 

  ≤ 2) of  tru ,  and c is the wave velocity of free 

vibration. It is easily seen that the whole hierarchy of 

moments   trM k

k  have the same time 

dependence as for the fractional Brownian motion though 
their statistical features are quite different. Now taking the 
Laplace transform of equation (15), we get: 
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where      , ,u r s L u r t    . 

 
Equation (4) can be written as: 
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Taking the series solution of  sru ,  as: 
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This study finally obtain: 
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where A and B are constants. 
 

Therefore,   1,u r t t                                              (20) 

 
It clearly exhibits the power law decay of u(r,t) with   in 

contrast to the stretched exponential decay characteristic 
generally seen in fractional Brownian motion. 
 
Solution of the problem by homotopy analysis 
method 
     
Here, the application of the homotopy analysis method is 
discussed for solving the fractional vibration equation (15) 
with the initial conditions: 
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Equation (15) can be written as: 
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To solve Equations (21) to (23) by homotopy analysis 
method, according to (10), the 0th-order deformation can 
be given by: 
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Leffler function [16].  

Figures 
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                                                           (c) 

Fig. 1.  Plot of  u(r, t) with respect to r and  t at  c = 5 

 

 
 
Figure 1.  Plot of  u(r, t) with respect to r and  t at  c = 5. 

(a) ,3/1    (b) ,3/2   (c) 1 . 

 
 
 

We can start with an initial approximation of   1,0 tru  

and choose the auxiliary linear operator: 
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where 21 ,cc  is an integral constant. We also choose the 

auxiliary function to be:   .1, trH   

Hence, the mth-order deformation can be given by: 
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Now the solution of the mth-order deformation equation 

(25) for 1m  become: 
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Consequently, the first few terms of the HAM series 

solution for 1  are as follows: 
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Figure 2. Plot of  u(r, t)  vs. t  for different values of   at  r = 

10  and c = 5.  :  (+)  = 1/3 , ()   =2/3,  ()  =1 . 
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and so on. Hence, the HAM series solution is: 
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  is the generalized Mittag-

Leffler function (Mittag-Leffler, 1904). 

 
NUMERICAL RESULTS AND DISCUSSION 
 
Here, the numerical results of the displacement for 
various values of radii of the membrane and time are 
presented in Figures 1 and 2. It is observed from Figure 1 
that the displacement increases with the increase of both 
r and t for the wave velocities c=5. It is also seen from 
Figure 2 that the displacement rapidly increases with the 
increase of  t and c both at a fixed value of the radius of 
the membrane (r = 10) but decreases with the increase of 
the   fractional   time   derivative,   which   is  in  complete 

agreement with the fact described in “The homotopy 
analysis method (HAM)”. The numerical calculations and 
figures are made using Maple software (Version 17). 
 
Conclusion 
 
Homotopy analysis method is very powerful in finding the 
solutions for various physical, vibration and oscillation 
problems. The main interest is to construct a competitive 
study of finding numerical solutions to vibration equation. 
It is seen that the method used in this study is efficient for 
finding the solutions in higher degree of accuracy. This 
study’s method is direct and straightforward and it avoids 
the volume of calculations. Also, HAM facilitates 
computational work for which it gives the required 
solution faster when compared with the other methods. 
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